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I. INTRODUCTION

The synthesis of nonlinear controllers for nonlinear, time~varying plants
according to the Direct Method of Liapunov has received considerable attention
in the literature over the past several years. In all such controllers, cor-
rective feedback is generated by means of an ideal signum functiom, the
characteristics of which can only te approximated by some imperfect physical
element. In as much as this imperfection could affect the stability of the
controller, it becomes necessary to analyze the imperfect motion that could
result, In particular it is desired to obtvain conditions sufficient for such
motion to be bounded and to find a realistic estimate of this bound in terms
of design parameters. It is therefore intended that this study will not only
add rigor to practical applications of the synthesis techniques but also in-
crease their design flexibility. The existence of such a bound for some sys-
tems has been considered by Monopoli2 however, the conservative nature of the
bound rendered it ineffective as a desien tool

In the following section the problem is formulated mathematically fol-
lowing a brief outline of a typical Liapunov synthesis technique.

In Section 3, specific imperfections are enumerated and it is shown that
all give rise to a common state-space region outside of which the imperfect
controller must behave as the ideal. This rezion of imperfect control is
found to be essential to the subsequent bound development.

The next logical step is to investigate motion of the system in the region
of imperfect control. This is carried out in Section 4 where the assumption of
canonic form is made. A necessary and sufficient condition is found for im-~
perfect motion to be bounded. This condition, obviously necessary for bounded-
ness of motion not necessarily confined to the region, camnnot, without further

consideration, be shown to be sufficient.



Sufficiency is established in Section 5 after it is shown that the ideal
controllers considered actually guarantee that the state vector approaches the
switching plane monotonically. This proof opens the door to further investi-
gation of the synthesis technique and, for purposes of this report, provides
a necessary and sufficient condition for the bound. calculated in section 7.

In Section 6 some background is provided to justify the development in
Section 5 and some design improvements are discussed. |

Section 8 is comprised of two illustrative examples and Section § con~-

tains a discussion of the bound development to non-canonic systems.

2. TPROBLEY STATEMENT

The problem considered herein pertains to single-~input, single-output
nonlinear, time-varying nth—order control systems which can be represented
mathematically by the following vector differential equation

X = A(t)x + f£(x,u,t) + b(x,u,t)Sen{y(x)} . )
Liere #, £ and b are n-dimensional column vectors, A(t) is n x n and the scalar
signum function, Sgn, having scalar argument , y(x), is defined as
:—1 s Y > f-)-.1
Sen(y) = [0 ;3 y=0 (2)

-1 Yy <90

where o is defined within the limits
o] 21 (3)
Linear suitching is assumed, thus

T n
v@® =Px=]Px. (4)
i=]

Furthermore it will be assumed that x is bounded for bounded x.
The first two terms on the right of (1) represent the open-loop plant.

The third term represents corrective feedback employing ideal switching through



the signum function. This feedback, derived through synthesis procedures based
on the Second Method of Liapunov or through some analogéus procedure involving
a Liapunov-type function, is assumed to guarantee that motion, §jt,§bt0), of
(1) is asymptotically stable for all (go,to)eR.

The system (1) is therefore a general relay control system* employing
linear switching which, under the assumption of ideal switching, is asymp-
totically stable. The synthesis of such Liapunov controllers is treated by
Graysonl, Monopoliz, Lindorff3, Taylor4 and others and work along these
lines is summarized by Graysons. Characteristic of this synthesis technique
is the definition of a positive-definite quadratic Liapunov function

V(x) = x'Px (5)
the time derivative of which is maintained negative definite by controlling
the sign of a certain term, 5??(00...f). This is accomplished by means of a
corrective feedback signal appearing in f£. This signal is given a magnitude
sufficient to guarantee that its sign dominate the sign of f and it is given
the sign of -g?P(OO...l). Of paramount importance in this technique is the
fact that the sign-generating function must not alter the magnitude of the
feedback signal. Therefore, ideal switching through the signum function is
essential. However, since corrective feedback is formulated outside the plant
and since any physical or electrical switching element can only approximate
the ideal signum function characteristics, the designer must concern himself
with the possible consequences of this approximation. TForced to use an element
which may exhibit finite linear range, dead-zone or possibly hysteresis, the
designer must analyze the motion of (1) that may result due to this imperfect
control.

This analysis would apply also to cases wherein the designer may wish to

deliberately incorporate imperfection into the switching element to conserve

* The term ''relay control” does not necessarily refer to the physical device
but rather to its idealized characteristic, the signum function. It may well
be that actual switching is achieved statically. 3



fuel or energy or to satisfy some such constraint.

Imperfect control may also result when additive noise enters into state
measurement and thus affects the instrumented switching function argument,
v(x).

It becomes apparent that in practical implementation, motion of the im-
perfect control system is no longer governed by (1) to be asymptotically stable.
That is, the sign of 6 is no longer guaranteed negative definite., The problen
considered herein is that of studying the imperfect control of systems which
in idealized form are described by (1) and which have been designed via
Liapunov's Direct Method. After obtaining sufficient conditions for the re~
sulting motion to be bounded, the problem becomes that of obtaining a realis-
tic estimate of this bound.

In the following section, controller imperfections are showm to give rise
to a common state-space region outside of which motion of the imperfect con-
troller is identical to that of the ideal controller, This is termed the

region of imperfect control.

3. REGION OF IMPERFECT CONTROL

We now consider the imperfect control that results vhen the signum func-
tion, Fig. la, 1s approximated by some practical element such as a saturating
amplifier, Fig. 1b, a2 relay with dead~zone, Fig., lc, or hysteresis, Fig. 1d,
or wvhen bounded additive transducer noise enters into the measurement of the
signum function argument, y(x). It is apparent in Fig. 1 that for y(x) of
magnitude L or greater the approximating functions coincide with the ideal,
thus motion is described by (1). However, for y(x) of magnitude less than
L the approximations are poor in that they may have insufficient magnitude

or incorrect sign. In this case motion is not governed by (1) and imperfect



control results. It is important to note, however, that imperfect control

can only result in the state-space region { defined by

e={x: |y@®] <L} (6)
This is termed the region of imperfect control for the imperfections enumerated
above, g Sen () 3 SAT(y)
1 1
»Y =" Y
L
-1 -1
a) Ideal Signum Function ‘ b) Saturating Amplifier
c) Relay with Dead Zone d) Hysteresis Element
4 Rel( ) a Hys()
1+ —————— R & SO —
-L A
=L >Y —~ Y
L v L
et =1
-1
Figure 1

Signum Function and Approximations

This region of imperfect control is also common to other imperfections
such as proportional transudcer noise, proportional transducer error, measure-
ment delay and finite switching time. In the case of proportional noise and
for the case of a percentage error of a transducer it follows that over any
compact set in the state space a number L can be found that bounds the measure-
ment imperfection in y(x). Thus the region of imperfect control is as described
in (6).

A similar region results in the case of measurement delay and finite

switching time. Eowever, here, imperfect control is possible only in a certain



time period, A, following the time that switching should occur, ts. In as
much as ideal switching occurs on the switching surface, y(x) = 0, and since
% 1s bounded for bounded x it follows that subsequent motion §ﬁt,§s,ts) for
t, ittt +ais confined to some bounded region about X and the existence
of such a number L is guaranteed.

Having established the state-space region in which imperfect control can

result due to the imperfections considered, it is now helpful to investigate

the possible motions of x in such a region.

4, DBOUNDEDNESS OF SOLUTIONS IN THE REGION OF IMPERFECT CONTROL
It has been shown that motion of the imperfect control system is described

exactly by (1) when the state vector x is in Q', the complement of the region
of imperfect control, R. Therefore, motions entirely contained in Q' behave

as though they were asymptotically stable provided they are also within R,

the domain of asymptotic stability of (1). llowever, motion of relay control
systems usually tends to the switching surface y(x) = O and thus to Q. Vhen

X enters  imperfect control can result and asymptotic stability is no longer
guaranteed. It is the purpose of this section to study the motion gﬁt,to,x )
This will provide a

under the assumption that x(t,t O)eQ for all t > ¢

0¥ 0"
necessary condition for bounded motion of the imperfect system throughout R
and will lead the way for the bound calculation.
The general method of attack is to treat the constraint
x(t,t;,x,)eR, for all t > t,, (7
which is equivalent to the constraint
ly@ 1| <1, (8)

as a state-space constraint on one of the state variables x This inequality

io

constraint on x, is then framed as an equality by introduction of a slack



variable, a(t). Then substitution for x;, in (1) will result in a reduced-

i
state system independent of the scalar input u(t) but demendent on the slack
variable o(t) which is treated as an input. Allowing a(t) to vary within its
bounds, necessary and sufficient conditions for the boundedness of solutions
of the reduced-state system are then found. These conditions are shown to be
necessary and sufficlent for the boundedness of solutions of the imperfect”
systen throughout R. . -
The discussion up to this point has been general. However, since the

technique does not apply to all systems in the form of (1) it is instructive
to treat one special form and then discuss extension. It should be pointed

out that the form treated is that particular form required of the synthesis

techniques of references 1 through 4.

Assume (1) is in the Canonic Form, that is,

Xl = X2

Xy = %5

L. (©)

xn-l = xn

in = m(t)

where

n

n(t) = a, (t)x, + £(x,u,t) +bg,u,t)Senly(x)}. (10)
i=1

Linear switching is assumed,
n
Y(x) =izlpixi (11)
with the coefficients Py constant. ansidering motion confined to the region

of imperfect control, Q, defined in (6) which in this case is the hyperplanar



region centered about the switching hyperplane, it follows that

Iy | <L (12)
or explicitly

E
p.X
L

< L. (13)

Rearranging terms and assuming P, > 0, this may be framed as a constraint on

X s

n
n-1 n-1

- %n- g,gixi - %‘;- < xn < - -Il;r-l- gaglaixi + %,: (14)

vhich is satisfied if
1 n-1

x == ;;'gagixi + a(t) (15)
where a(t) varies in an unknown manner satisfying

la(e) | < L/g. . (16)

In light of this realization, the motion of x through Q according to (1)

is described by the following set of n-l differential equations

31T % .
S L EY |
1 n-1
in—l - ZLpiXi + a(t) ¢%))
i=1

along with the linear (15). In other words, motion of the nth order, unonlinear,

time-varying, single-input single-output differential system (9), subjected to



the linear state-space constraint, (12), may be characterized by the (n-l)St—
order constant differential system with bounded input a(t). In as much as the

subsequent calculation of an errotr bound is :based solely on this reduced-state

system, it is apﬁropriate at this point to compare this reduced system (17)
with the original control system, (2).

The reduced system characterizes the original system for the case xe{l.
in that it is capable of providing any motion that could be realized by the
original system. This is accomplished by means of the slack variable a(t).
From the definition of a(t), it follows that

y(t) = pnu(t). (18)

Thus motion of the reduced system with constant o corresponds to motion of the
original system on a constant y plane, and as o varies the y-plane containing
x varies. Therefore, motion of the original system, (9), in the region Q is
treated as motion parallel to the switching plane and motion perpendicular to
the switching plane. It is by nature of this fact that the order of (17) is
lower than that of (9).

It:.should be noted that some degree of comservativeness is present in the
reduced system due to the fact that it is capable of motion that the original
system cannot achieve. In particular, by placing no constraint on the time
derivative of a(t), X is alloved to change instantaneously in the reduced
gystem. For the original system, this is not possible in light of the assump-
tion of bounded Xk,

Of importance here is the fact that the set of all possible solutions of
the original system are contained in the set of all possible solutions of the
reduced system. Thus boundedness of solutions of (9) would be implied by
boundedness of solutions of (17). This will be considered in the following

discussion.



Congider the vector representation of the reduced system (17)

X = Alér + _b__ra(t) (19)

T
where_rgr is the reduced state vector, (xl, oy o 0 o X _1) and

0 1 0 o0.... ] o]
0 ¢ 1 0.... 0
0 0

A " 0 1 C AT ‘ffb)
0 1 :
I . ,
Lpn P, Pn- -

até (n-1) x (n-1) and (n-1) x 1 constant matrices respectively and |a(t)] is
bounded by (L/pn). Existence of a bound on.solutions of this linear, time-
invariant system with bounded input is guaranteed by classical stability theory.
That is, all solutions are bounded if and only if Ar is a stability matrix.

Recalling that for the case a(t) = 0, (19) represents motion on the
switching plane, y(x) = 0, it is logical to require that such motion be stable,
in the classical sense. This condition is necessary for the remaining discus-
sion and it is considered to be valid for most systems in the form of (9).
Notice, however, that, due to the conservative nature -of .the reduced system, the
assumption on‘Ar has ‘only been showm to be sufficient.

In light of this assumption, solutions of the reduced system are bounded
and this implies that solutions of the original system, (9), gﬁt,to,x et for

all t 3_t0, are bounded and ‘escape' of x through Q is ruled out. It will be

shown, however, that this escape would occur for the case when Ar is an uyn-

stable matrix.. Thus. in terms of boundedness of solutions of.the original

10




system, the stability constraint is also necessary. Having established the.
above condition for boundedness of motion of the canonic system, (9),
with linear switching, when such motion 1s confined to the region of imperfect
control, 2, we can now consider the unconfined motion of the imperfect system

throughout the larger region R.

5. BOUNDEDNESS THROUGHOUT THE DOMAIN OF ASYMPTOTIC STABILITY

To summarize the development to this point, it has been shown by means of
the reduced system that motion confined to Q is bounded providing motion on the
switching plane y(x) = O is bounded, This is guaranteed if the reduced system
matrix A.r is a stability matrix. The problem to be considered in this section
pertains to boundedness of motion in R,

Boundedness of motion confined to Q for all t 2ty is certainly necessary
for boundedness in R but what is required here is a sufficiency condition.
With the aid of Fig. 2 it will now be shown that boundedness of x in Q does
not immediately imply boundedness in R and thus further development is re-
quired.

Notice that motion gﬁt,to,go) confined to Q, Fig. 2, for all t 3_to and
any §Oe9 according to (17) ultimately lie within some bounded region BQen.
This follows from the stability matrix assumption on Ar' Response to the
initial condition §b(t0) decays to the origin and response to the bounded
input, a(t) is bounded. Therefore, any motion confined to @, originating
inside B, is contained in B

Q f
trajectory ;_originating at 50539 which is permitted to leave Q. Corres-

for all subsequent time. However, consider a
ponding to the point, a, at which i leaves Q@ is a Liapunov contour Va inside

of which it must remain when it is contained in Q'AR. From Fig. 2 it is

evident that x must return to Q at some point b inside the Va contour.

11
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Figure 2

Escape by Cyclical Motion of x




However, nothing at this point rules out the possibility of ;_then leaving Q
at some point ¢ outside Va and continue in this fashion to escape: This dis-
cussion demonstrates that further development is required to show that the
condition on A,r is necessary and sufficient to guarantee the boundedness of
motion of the imperfect control system throughout R.

At this point, the class of systems which can be treated further would
become quite limited, were it not for the fact that, in physical implemen-
tation of the Liapunov controller, choice of a Liapunov function in the
synthesis procedure is reflected only in the coefficients Py in the switching
function. These terms are equal to the respective terms pij in the right hand
column of P, the quadratic Liapunov function matrix, (5). Thus a particular
set of terms {pi} could correspond to synthesis based on any one of several
positive definite matrices P. In fact, there are an infinite number of such
P's. The designer is therefore free to choose any P with the particular
Pyn = Py» i=1, 2, ... n to analyze motion of the Liapunov controller. There
is one particular matrix P, corresponding to the set {pi}, which facilitates
further development of the bound in R. This P matrix is positive semi-definite,
The synthesis procedure based on a positive semi-~definite Liapunov function is
considered in the next section where it is found to have many advantages. It
is helpful to summarize that discussion at this point.

For the class of Liapunov controllers which can be designed according to
a positive semi-definite Liapunov function it follows that under the assumption
of ideal switching, asymptotic stability can be achieved. In this case the
Liapunov function V(x) vanishes not only at the origin but at all points on
a hyperplane in the state space. This hyperplane is necessarily the switching
plane. Furthermore, negative semi-definiteness of V(g,t) assures that motion

in the ideal system will approach the switching plane monotonically. However,

13




as before imperfect control cam occur inside @, (6), but with a semi-definite
Liapunov function constant - V(x) contours coincide with constant - |y(x)] con-
tours. In as much as V(x,t) is strictly negative for fyl > L and thus for

V(x) 3-VL’ the corresponding Liapunov contour, it follows that once x enters

Q it cannot leave Q. Therefore the bound obtained for the reduced system,
(17), which represents this motion in Q, is a valid bound for motion of the
system in R. This bound is valid for any initial condition within R. Further-
more, it is shown that any system which reduces to stable Ar can be analyzed
with positive semi-~definite V(x). The bound technique applies therefore to
all such canonic systems represented by (9).

Thus for canonic systems employing linear switching the stability matrix
constraint on the reduced system matrix, Ar’ becomes necessary and sufficient
to guarantee boundedness of the imperfect system. In the following section
it is shoun that this condition on At is implied by asymptotic stability of
the ideal system, (1), assumed at the onset. In Section 7 the problem of

calculating the bound will be considered.

6. DESIGN GENERALIZATION
In this section we consider systems designed from definite Liapunov

functions as though they were designed from semi-definite functions, Justi-
fication for choosing semi-definite functions V(x) and ﬁcg,t) is based on the
intuitive notion that if V vanishes on some manifold in {x} and 1is positive
everywhere else and if vV is negative except on the same manifold, where it
vanishes, then V must decrease monotonically until, after a finite time, it
reaches zero and remains zero for all time. These conditions therefore drive
X to the manifold. More formally, the above notion is expressed in the fol-

lowing theorem attributed to LaSalleﬁ, which is modified for application to

14



the problem at hand.

Theorem 1: Let ¥ be a closed and bounded (compact) set in {x}
with the property that every solution of (1) which begins in ¥
remains for all time in ¥. Suppose there is a scalar function
V(x) which has continuous first partials in ¥ and is such that
ﬁ(g,t) <0 in ¥. Let E be the set of all points in ¥ where
ﬁ(g,t) can vanish. Then every solution‘g(t,to,gb) with goe?
approaches E monotonically as t + =,

For the region ¥ we take the largest contour of the positive-definite
Liapunov function which is entirely contained in R, The set E then becomes
the intersection of the 6(§,t) = (0 gset and ¥. Solutions of (1) originating
within ¥ therefore must approach E monotonically.
If y(x) and V(x) are to vanish on the same plane then since V(x) is
quadratic it must be that
V(x) = MK{y(x)? (21)
or expressed in quadratic form
V() = %K« Px (22)
the elements of P must be
Pyy = PyPye (23)
The time derivative is then
V(z,t) = Ry(0)¥(). (24)
The synthesis procedure in this case involves forcing sufficient magnitude of
the control term appearing in ¥ so that its sign governs the sign of y and in
addition guaranteeing that y not vanish except on y = 0. The control temm is
then given the sign of (~y) and negative semi~definiteness of V 1s assured.
The set E then is the intersection of the switching plane with ¥. By

LaSalle's theorem, the ideal system will attsin E and therefore reach the

15



switching plane y(x) = 0. If this system is to be asymptotically stable in
some region R, then subsequent motion on the switching plane must be asymp-
totically stable. It was pointed out earlier that motion on the switching

plane is described by the reduced-state system with a(t) = 0, that is

B = AX @3
where
0 1 0
0 0 1 0
Ar= 1] 0 0 . (26)
0 1
B P _Pa1
pn pn pn

This motion is asymptotically stable if and only if Ar is a stability matrix.
It becomes apparent that the designer is not free to treat every system
as through it were designed with semi-definite V but rather only those systems
having coefficients Py which cause all (n-1) roots of Ar to have negative real
part. However, it has just been shown that the class which can be treated is
that class of systems which reduce to stable Ar and this is necessarily true
of all systems which guarantee asymptotic stability inside some region R.
Since this was assumed of the canonic system (9) we have general application.
In surmary, it has been shown that motion of the Liapunov controllers
considered ia:this report can be studied with semi-definite Liapunov functionms.
This implies that x approaches {1 monotonically and that once it reaches Q, x
cannot leave the regjon. Therefore the bound on x for motion in R is the same
as the bound on .x for motion confined to Q. "his bound may be found by solu-

tion of the reduced system, (19), and the 1-:¢.~r constraint, (14).

16



Experience in applying the semi-definite design technique has pointed out
several advantages over the conventional procedure. Besides offering a cal~
culable bound, which in the next section is shown to be realistic, it lends
itself to realistic estimation of convergence time both to the switching plane
and to the bound. Furthermore, determination of the state-space region in
which the control law, is valid, R, is greatly simplified. For these reasons,
this modification to the design procedure of such Liapunov controllers is

recommended.

7. BOUND CALCULATION
It has been shown that the bound on motion of the imperfect control
system in R can be found by solving for the forced response of the reduced
system

k = Alér + _b_ra(t) (27)

to the input ot) bounded by

la(®)] < L/p (28)
for the variables X3 i=1, 2, ... n-1 and by solution of
1 nil 29)
X = - p,.x, + a(t) 29
n Pn 1=1 11

for the variahle % . Calcnlation of such a bomn?d ran be readily accomplished
in terms of iic I1pulse respomsz, hr(t), represertirg the relation between in-
put a(t) ard omicet w,(t) expressed in (27). troe defInitlen of hr and (29)

it followe that

N 11

x, (2 = a(r)—fo-o b (t-tidr, 421, 2, .. w-l (30)
- 9} At h T
and
x =-L E"lp o gl
n Py jep & 0 u(t);:I:T'hr(t~T)dr + a(t) (31)

17



In light of the bound on |ao(t)| a valid bound on x is B = Bé)Bn where

i-1
d
B, = {x: f b_(t-t)|dt, 1 = 1, 2, ... n-1} (32)
r pn 0 dti -1 'r ’
and
L B t di—l
Bn-{xnzlxl ;—gll ”l ilh(t‘r)'d‘r-l-—;} (33)

This general procedure has been outlined only for the purpose of completing
this general development. It is very likely that with a specific problem in
mind the designer may be able to determine a less conservative bound.

The conservative nasure of this general ‘cubical bound B results, in part,
from application of the triangle inequality to obtain Bn and from the fact that
although Br is a valid bound for motion of the reduced system from the origin
X = 0, it contains points which cannot possibly be reached by the system.
Examples point out that a more reasonable bound could be based upon the subset
B; of Br which includes all points in X, which can be reached from the origin
X, = 0 by application of an admissable control, a(t), 0 < t < =, bounded ac-
cording to (28). The set B; is thus the set of all points to which the reduced
system can be controlled, from the origin. This 'region of controllability'
is termed the 'reachable set',7 conventionally defined for single-~input,

single-output, linear, time-invariant system as

t
B; - fgrzgr -t]exp(Ar(t-t))gra(r)dr; a(t) admissable}. (34)
0
In certain cases, it is possible to calculate the reachable set B; of the

reduced-state system with admissable a(t) being defined by (12). From this

set a bound may be determined in the form of some generalized norm. Examples
will show this method to be less conservative than that outlined previously,

but lacking generality. However, a general analog computer estimation technique

will be outlined.

18



Calculation of the reachable set has been outl:lned8 for an nth order
linear system having distinct real eigenvalues. After transforming such a
system to diagonal form, a procedure is outlined for finding the boundary of
the reachable set of the diagonal system. However, only in the case of first
and second order systems, does this lead to an algebraic expression which may
be transformed back to the original system. In as much as second-order re-
duced systems result from third-order control systems, the above results do
have limited application. This has led the author to develop a closed-form
solution for second-order systems having complex eigenvalues. These results
aré outlined below.

Framing this as an optimization problem incorporating bounded input,
a(t), open endpoint and open time, wherein the terminal cost function directs
the second-order reduced state system to achieve some extreme n-dimensional
closed convex manifold, the solution derived via the Maximum Principle is, in
fact, the minimum time solution with one arbitrary initial condition. Inde-
pendent of this unspecified initial condition on one adjoint variable, the
optimal forcing, ao(t), is found to be a square wave of magnitude L/p3, in
accordance with (28) and frequency equal to the undamped natural frequency
of the roots of the reduced-state system.

For reduced systems of orders greater than two with roots not necessarily
distinct there is no known technique for calculating the reachable set. How-
ever, a very good approximation to the reachable set can be obtained by
simulating the reduced system (19) on an analog computer. This is made pos~-
sible by the fact that the reachable set is obtained only through maximum

forcing of a(t). Observing any two states x , plotted in real time on

1 %
an x-~y plotter, scaling time and megnitude if necessary, an operator can

readily learn to manipulate a full-force bang-bang control on a(t) to determine

19



the region in the (xi,x ) plane which can be reached. This region 1s then the

3
(xi,xj) projection of the reachable set. Repeating this procedure p_(g;l_)_

times leads to all possible projections with those involving the state X ob-
tained by the additional simulation of (15). Therefore an approximation of
the reachable set can be constructed from the 9‘%:1) projections.

This approximation is found to be realistic in light of the fact that,
for such systems as the reduced system, (28), convexity of the reachable set
1s guaranteed by convexity of the set of admissable control, (28)7. There-
fore, 'holes' cannot occur.

Examples of this bound estimation technique are given in the following

section,

8. EXAMPLES
In this section the bound development will be demonstrated on a second-
order control system with transducer noise imperfection and a fourth-order
system with hysteresis. These examples lead the way to discussion of exten-
tion of the technique to non-canonic systems.
Consider the ideal controller synthesized for a second-order plant with

square-law damping9

. 2 2
ky = -Kbx1 - a(xz) + {cllxll + czlle + c3(x2) }Sgn(xl+2x2). (35)

This control system in ideal form is asymptotically stable in a certain region
R about the origin. However, due to noise encountered in the measurement of
X, it is possible that imperfect control can result. This noise is known to
be less than 1/3 volt, thus the region of imperfect control is limited to

Q= {x: le + 2x2| < 2/3}, (36)

sketched in Fig. 3.
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For motion within Q it follows that

-2/3 < %, + 2x2 < 2/3 (37)

1
By introducing the slack variable, o(t), this is satisfied if

x, = -%xl + a(t) (38)
where

fa(e)| < 1/3. (39)
By knowledge of the fact that xeQ, then, behavior of the state x, is estimated
by (38) and we need not be concerned therefore with the second equation in
(35). Substituting (38) into the first equation gives

ko= hx; + a(p). (40)
This is the reduced system. In this case no elaborate technique is required

for calculating the bound on x It results that

1

lxl[ < 2/3 (41)
and from (38) and (39) ¢

Ix, | < 2/3. (42)
The bound on motion of the imperfect system is therefore the intersection of
(41) and (42) and 9, sketched in Fig. 3.

This bound can be reasoned from the phase-variable structure of (35).

In as much as il = X, then when %, is positive x, must be increasing and when
%, is negative x, must be decfeasing., This implies that motion confined to
Q in the first and second quadrant of the phase plane must eventually lead to
the third or fourth quadrant and visa-versa. Furthermore, once x passes
through the line Xy = 2/3 or X = <2/3 it can never go back through. This
establishes the same bound as above.

The next example is a controller which, in ideal form, guarantees asymp-

totic stability of a fourth-order, dynamically-unstable plant. The plant
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consists of a rigid, inverted pendulum mounted on a positicned cart, as
sketched in Fig. 4. In accord with the design in reference 10 the assumption
of small pendulum angle, ¢, leads to linearization of the equations of motion

which are then transformed into the canonic form

(43)

b“. hz(' o

- A2x3 - & + 35gn(x; + 3x, + 4xy + 2x),

where 8 is a bounded term. This system was simulated on the PACE 231-R
analog computer, A hysteresis function, as described'in Fig. 1d, with L=1/10,
was substituted for the ideal signum function. The system limit-cycled and
this was recorded on several x-y plots to be compared with the theoretical
bound developed below.

In this case motion in the region of imperfect control can be represented
by

x, = ~1/2x, - 3/2x2 = 2%y + a(t), (44)

and the reduced system

=%

iz = Xq

i3 = -1/2x, - 3/2x, - 2x, + a(t) (45)
where

la(e)| < 1/20. (46)

To obtain an estimate of the bound, (44) and (45) were simulated on the analog
computer as discussed in the previous section. The results are found in

Figures 5a, b, ¢ to bound the limit cycle that occurred. In fact this bound
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is quite realistic when compared with any other estimate found in the litera-

turez.

Although these examples involve a numerical bound it follows that the
technique would yield an algebraic bound if the problem were framed in that
manner. It is this property that renders the development useful for design
purposes., Noteworthy also is the fact that the bound approaches zero with L.

With these examples in mind, it is now possible to discuss extention

of the technique to non-canonic systems.

9. EXTENSIONS

It was pointed out in Section 4 that the canonic form was required of
the synthesis procedures of references 1 through 4. However, this require-
ment can be relaxed by employing semi-definite rather than definite functions
for V and V. It therefore becomes important to consider extension of the bound
development to non-canonic systems.

We now return to the general equation (1).

X = A(t)x + £(x,u,t) + b(x,u,t)Sgn{y(x)} (47)

and recall that the assumption of canonic form, (9), implies that A(t) be of

the form
- 0 1 | R |
0 0 1 o0 ...
A(t) = 0 0 ] 1 0 (48)

[ . s e e « o =

. - . L) - * e o e @» 1

81(t) az(t) a3(t) . . an(t)

b, ouad

and that £ and b possess only one non-zero term which must be in the 2™ row.

The primary reason that the bound development applies to this form 1s that the
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expression for x 15),

-1

+ a(t) (49)

1
X = -
n P,

e P13

et
resulting from the agsumption xeQ, can be substituted into (47) thus reducing
the order of this vector differential equation by one and resulting in a linear
time-independent equation having bounded input, a(t). Solutions of this equa-
tion are not difficult to study due to the absence of nonlinearities, time-
variation and possibly.unknown terms. It is straight-forward to see that the
same would be true if £ and b had non-zero terms in the ith row only, " . In

this case the condition xeQ ' g solved for x This would have the form

i.
Ly
X, ® - =— p,x, + a(t) (50)
i Py j=1 i1
il
where a(t) would be limited by
fatt) < L/p, (51)

This extension could be carried out only 1f Py ¥ 0,

It is also possible to extend the discussion to treat non-canonic matrices
A{t). However, this allows time-variable coefficients to enter into the re-
duced-system matrix Ar(t) and they would have to be considered in the bound
estimation. Such terms could affect conservativeness of the estimate.

Extension 1is also possible to systems which have more than one non-zero
term in £ and b but qualifications become so tedious that this is not con-

sildered further.
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